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Open source tool for data science.

Open source version of old S (Bell Labs).

“We're not in Statisticsland anymore.”

Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

Typically used in interactive mode, like Python.
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e RStudio
Enormously popular. By JJ Allaire, developer of Cold
Fusion long ago.

e ESS—Emacs Speaks Statistics

For the really hard core R programmers.
e vim-r

Ditto, but for Vim.

e StatET
Nice, if you can deal with Eclipse.
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e We're in the era Big Data:

e Large number of data points.
e Large number of variables.

e Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.
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e R was not designed for parallel computation.
e R is not threaded, probably won't be in the future.

e R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x[622,8888] <— vy

may cause the entire matrix storage to be reallocated.
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All of the below are done, though with some drawbacks.

e Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

e Same for GPU.

e Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I'll focus on that last approach.
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Major paradigms for general parallel programming:
e message passing:

// copy x (process 3) to y (process 8)
p.3 sends x

p.8 receives

p.8 does y = x

Used on both clusters and multicore.

¢ shared-memory:

// copy x (process 3) to y (process 8)
y = X

Technically usable only on multicore.
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e OpenMP very popular, misc. (TBB, Cilk++).
e CUDA is big.
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e message passing:

e Got a head start, since shared-memory hardware affordable
only recently.
o MPI very popular.

e shared-memory:

e Small, medium multicore, and GPU, now common.
e OpenMP very popular, misc. (TBB, Cilk++).
e CUDA is big.

Yet the situation is quite different in parallel R:
Message-passing dominates.
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e message passing:

e “snow” part of parallel (L. Tierney, U. of lowa)
Was a contributed package, now part of base R.

e “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

e Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

o foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

e shared-memory

e Rdsm (NM)
Contributed.

e gputools (Buckner et al, U. of Mich.)
Contributed.
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Res As a sample application, let's use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with Os and 1s.)

Here is the serial code:

1 mutoutser <— function(links) {

2 nr <— nrow(links); nc <— ncol(links)
3 tot = 0

4 for (i in 1:(nr—1)) {

5 for (j in (i+1):nr) {

6 for (k in 1l:nc)

7 tot <— tot + links[i,k] = links[j, k]
8 }

9 }

10 tot / nr

11 1
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Improvement: 2 loops can be eliminated by noting that they
are equivalent to matrix multiplication.

for (j in (i+1):nr) {
for (k in 1:nc)
tot <— tot + links[i,k] * links[]j, k]
}

becomes

A W N

tmp <— links [(i+1):nr,] %% links[i ]
tot <— tot + sum(tmp)
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Improved version:

1 mutoutserl<— function(links) {

2 nr <— nrow(links)

3 nc <— ncol(links)

4 tot <~ 0

5 for (i in 1:(nr—1)) {

6 # matrix mult. operator is %%
7 tmp <— links [(i+1):nr,] %% links[i,]
8 tot <— tot + sum(tmp)

9 }

10 tot / nr

11 }
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size orig. | improved
500x500 | 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.
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The snow contributed package is now part of base R, in the
parallel package.

e Say have Machines A, B and C, networked. R is running
on all 3.

e “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

e B, C work on their chunks, send results back to A.
e R process A receives, and combines the results into the

final answer.

Communication between R processes done by sockets or other.
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bais 1 doichunk <— function(ichunk) {
2 tot <~ 0
3 nr <— nrow( Inks)
4 for (i in ichunk) {
5 tmp <— Inks[(i+1):nr,] %% Inks[i,]
6 tot <— tot + sum(tmp)
7 }
8 tot
9 }
10 mutoutpar <— function(cls) {
11 require(parallel)
12 nr <— nrow( Inks)
13 clusterExport(cls ,”Inks"™)
14 ichunks <— 1:(nr—1)
15 tots <— clusterApply(cls,ichunks ,h doichunk)
16 Reduce(sum, tots) / nr
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Timing, dual-core, machine, but hyperthreaded.

size | improved. | 2 wrkrs. | 4 wrkrs.
2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.
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e Data copied from manager to workers at beginning of run.
e Data copied from workers to manager at end of run.

e More copying from manager to manager at end of run; see
calls to Reduce() above.
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e API, operation similar to snow.
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e Probably the most popular type of parallel R currently.
e Actually just a wrapper to snow, multicore etc.

e Major attraction: Just replace for() in your serial code
with foreach()!?
E.g. Mutual Outlinks:

foreach(i = 1:(nr—1)) %dopar% {
for (j in (i+1):nr) {
for (k in 1l:nc)
tot <— tot + links[i,k] * links

2And add %dopar%.
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e Probably the most popular type of parallel R currently.
e Actually just a wrapper to snow, multicore etc.
e Major attraction: Just replace for() in your serial code

with foreach()!?

E.g. Mutual Outlinks:

foreach(i = 1:(nr—1)) %dopar% {
for (j in (i+1):nr) {
for (k in 1l:nc)
tot <— tot + links[i,k] * links

}

e But that “attraction” is a “fatal attraction” ...

2And add %dopar%.
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e Simply replacing foreach() can really rob your code of

speed.

e E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

More on foreach()

size | # wrkrs. | foreach() | snow
500x500 2 17.7s | 11.3s
500x500 4 13.6s | 6.0s
500x500 8 74s | 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply

change one line of one's serial code.




«Or Fr o«

Q>



Parallel R

Norm Matloff

University of

California at
Davis

Rmpi

e Provides R interfaces to most MPI functions,



Parallel R

Norm Matloff R m pl

University of
California at
Davis

e Provides R interfaces to most MPI functions, plus some
new ones specific to R.



Parallel R

Norm Matloff

University of

California at
Davis

Rmpi

e Provides R interfaces to most MPI functions, plus some
new ones specific to R.

e Very versatile.



Parallel R

Norm Matloff

University of

California at
Davis

Rmpi

e Provides R interfaces to most MPI functions, plus some
new ones specific to R.

e Very versatile.

e Can be a (big) pain to configure.



Rdsm

(O < o«

it
v

v



Rdsm

° Shared_memOry_

«Or Fr o«

i
v
a
it

Q>



Parallel R

Norm Matloff

University of

California at
Davis

e Shared-memory.

e Add threads to R programming!

Rdsm



Parallel R

Norm Matloff

University of

California at
Davis

Rdsm

e Shared-memory.
e Add threads to R programming!
e Builds on my old parallel Perl package, PerIDSM.



Parallel R

Norm Matloff

University of

California at
Davis

Rdsm

e Shared-memory.
e Add threads to R programming!
e Builds on my old parallel Perl package, PerIDSM.



Parallel R

Norm Matloff Rdsm Shared-Memory

University of
California at
Davis

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff Rdsm Shared-Memory

University of
California at
Davis

e R's array-access function ”[" ()3 is overloaded, with the
access being rerouted.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff Rdsm Shared-Memory

University of
California at
Davis

e R's array-access function ”[" ()3 is overloaded, with the
access being rerouted.

e In Rdsm 1.0, array access was routed to a server.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R
Norn ol Rdsm Shared-Memory

California at
Davis

e R's array-access function ”[" ()3 is overloaded, with the
access being rerouted.

e In Rdsm 1.0, array access was routed to a server.

e In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.



Rdsm Shared-Memory (cont'd.)

DA



Parallel R

Norm Matof Rdsm Shared-Memory (cont'd.)

University of
California at
Davis

e Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.



Parallel R

Norm Matof Rdsm Shared-Memory (cont'd.)
University of
California at

Davis

e Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

e The bigmemory package is not a parallel programming
system.



Parallel R

Norm Matlof Rdsm Shared-Memory (cont'd.)

University of
California at
Davis

e Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

e The bigmemory package is not a parallel programming
system.

e Rdsm adds parallel programming structure on top of
bigmemory.



Parallel R

Norm Matlof Rdsm Shared-Memory (cont'd.)

University of
California at
Davis

e Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

e The bigmemory package is not a parallel programming
system.

e Rdsm adds parallel programming structure on top of
bigmemory.
¢ R's bigmemory is perfect for Rdsm;



Parallel R

Norm Matloff

University of

California at
Davis

Rdsm Shared-Memory (cont'd.)

Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

The bigmemory package is not a parallel programming
system.

Rdsm adds parallel programming structure on top of
bigmemory.

R's bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.



Parallel R

Norm Matloff

University of

California at
Davis

Rdsm Shared-Memory (cont'd.)

Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

The bigmemory package is not a parallel programming
system.

Rdsm adds parallel programming structure on top of
bigmemory.

R's bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.



Parallel R

Norm Matloff

University of

California at
Davis

Rdsm Shared-Memory (cont'd.)

Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

The bigmemory package is not a parallel programming
system.

Rdsm adds parallel programming structure on top of
bigmemory.

R's bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

snow is used to launch the threads.



Some Rdsm APIs

(O @ (=»

«E»

v



Parallel R

Norm Matloff

University of

California at
Davis

Some Rdsm APIs

mgrinit(): initialize system
mgrmakevar(): create a shared variable
mgrmakelock (): create a lock
makebarr(): create a barrier

etc.
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“Hello World” in Rdsm

e Actually, matrix multiplication, the “Hello World" of the
parallel processing community. :-)

1 #code executed by each thread:
2 mmul <— function(u,v,w) {
3 # decide which rows of u this thread

4 # will work on

5 myidxs <— splitindices (nrow(u),

6 myinfo$nwrkrs ) [[ myinfo$id]]

7 # multiply this thread's part of u with
8 # v, placing the product in the corresp.
9 # part of w

0 w[myidxs ,] <— u[myidxs,] \%*x\% v[,]

1)



Launching the Threads

«O»r <« F»

it
-

DA



Parallel R

Norm Matloff Launching the Threads

University of
California at
Davis

# the clusterx() functions are from Snow
# send mmul() to the threads
clusterExport(c2,”mmul”)

# run the threads
clusterEvalQ(c2,mmul(a,b,c))

c[,] # check results

SO W N
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Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n | # cores | Rdsm | Snow
2000 8| 4640 | 6.398
3000 16 | 10.892 | 18.010
3000 24 | 8.778 | 19.001

The problem with snow (and multicore):

Too much data copying!
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R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

e However, snow, multicore etc. don’t have a terminal!.
e In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

e | have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

¢ As to multicore, the situation looks grim.
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¢ R’s gputools package offers some functions, mainly for
linear algebra operations.

e NVIDIA's Thrust package offers a number of C++
routines for various parallel ops.
e Use chooses “back end,” either GPU, OpenMP or TBB.
e So, your same code can work either on GPU or multicore

systems!
e | have developed an R interface to some Thrust-based

functions, named Rth.
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cran.us.r-project.org
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz
heather.cs.ucdavis.edu/~matloff/rth.html
heather.cs.ucdavis.edu/paralleldatasci.pdf
heather.cs.ucdavis.edu/ParallelR.pdf
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e CRAN, for Rdsm 2.0, foreach():
cran.us.r-project.org

e Rdsm 2.1:
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz

e my snow/Rdsm debugging tool:
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz

e Rth:
heather.cs.ucdavis.edu/~matloff/rth.html

e rough draft of the first 1/2 of my forthcoming book,
Parallel Computation for Data Science:
heather.cs.ucdavis.edu/paralleldatasci.pdf

e these slides:
heather.cs.ucdavis.edu/ParallelR.pdf
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