Intro to Rust

Learning to Write Safe Programs with
Less Code

First: do we need another language?

e lLanguage evolution is important
e New ideas can improve old languages (python, java, php)
e New communities can be built from the ground up

~T70% of security bugs are from memory safety [1]

IS THIS A NORMAL BUG OR | [Ms ANORMAL | [THE SERVER CRASHES
ONE OF THOSE. HORRIFYING ONETHIS TiME, | | IF A USERS PASSLIORD
ONES THAT PROVE YOUR IS A RESOLVABLE. URL.
WHOLE. PROJECT 1S BROKEN

" | | BEYOND REPAIR AND SHOULD

~| | BE BURNED TO THE GROUND?

from https://xkcd.com/1700/

https://xkcd.com/1700/

Challenges for system languages

How can we;

e Describe low level programs with high level abstractions
e Avoid a costly runtime (no garbage collection)
e Make safe memory guarantees at compile time

The answer: a better compiler

The rust compiler knows a lot about your program:

e Whenever values are assigned to variables
e Which code accesses and/or attempts to change values
e When values go out of scope

Introducing rust’s ownership model

Every value has an owner (in foo = 5, foo is the owner)
There can only be one

The value can be moved to a new owner (let x = 5; let y = x;)
Values are dropped when the owner goes out of scope

What happens next?

let sl
let s2

String::from("hello");
sl;

println! ("{}, world!", sl1);

from https://doc.rust-lang.orq/book/ch04-01-what-is-ownership.html

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

sl 1s no longer the owner

error[E0382]: use of moved value: °“si1°
--> src/main.rs:5:28

let s2 = s1;
-— value moved here

println! ("{}, world!", sl1);
AA value used here after move

: move occurs because ‘sl’ has type ‘std::string::String’, which does
not implement the ‘Copy’ trait

from https://doc.rust-lang.orq/book/ch04-01-what-is-ownership.html

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

Borrowing

e You can have as many immutable (read-only) references as you want
e Oryou can have one mutable (read/write) reference

What happens next?

fn 0O {
let mut s = String::from("hello"”);
{
let r1 = &mut s;
}

let r2 = &mut s;
)

from https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

Goodbye to null

e An option type is an enum that can have Some(<value>) or None
e Any code that uses it needs to handle both possible cases
e No null references or missing code paths

“I call it my billion-dollar mistake."

-Tony Hoare, inventor of the null reference

The Option type defined

enum Option<T> {
Some(T),

None,

The type variable T can be substituted with any type to make a new type.

e.g. Option<String>

Pattern matching

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {
None => None,
Some(i) => Some(i + 1),

}

let five = Some(5);
let six = plus_one(five);
let none = plus_one(None);

from https://doc.rust-lang.org/book/ch06-02-match.html

https://doc.rust-lang.org/book/ch06-02-match.html

Error propagation with ?

use std::1io0;
use std::1io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String, io::Error> {
let mut s = String::new();

File::open("hello.txt")?.read_to_string(&mut s)?;

Ok(s)

from https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

Zero cost abstractions

The compiler removes any overhead or unnecessary runtime lookups for
features like:

Pattern matching
Generics

Traits

Iterators

Fearless concurrency in rust

Uses channels to communicate

Threads are OS-level threads (not green threads)
Ownership/borrowing prevents data races and common bugs
There's nothing* special!

* aside from the sync/send traits and threading

API docs

Building docs compiles your code

APl docs can't get out of date

Types are linked to their definitions and sources
Provides links to dependency’s documentation
You can even use compiler-checked doc tests!

API docs: example

How would you work with the "Path’ library?

[-] 1impl Path

[-] pub fn new<S: AsRef<0sStr> + ?Sized>(s: &S) -> &Path

Directly wraps a string slice as a Path slice.

This is a cost-free conversion.

from https://doc.rust-lang.org/std/path/struct.Path.html

https://doc.rust-lang.org/std/path/struct.Path.html

WebAssembly (WASM)

No garbage collection makes it easy to compile to new targets
Rust .wasm files are small (no runtime)

Supported by firefox, chrome, IE, safari

Deploy your apps straight to the web

It's not JavaScript

When to use rust

Greenfield projects

Anywhere you'd use a low level language
Compiled extensions for python

WASM

When not to use rust

e Great abstractions! ...still not suited to scripting
e Not the most common skillset
e Doesn't have the libraries of java and python

How do I learn more?

e https:/doc.rust-lang.org/stable/book/
e https://qithub.com/ericrasmussen/rust-exercises/

https://doc.rust-lang.org/stable/book/
https://github.com/ericrasmussen/rust-exercises/

Links

[1] https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

